Search results for "optimization algorithms"
showing 10 items of 32 documents
Feature selection with Ant Colony Optimization and its applications for pattern recognition in space imagery
2016
This paper presents a feature selection (FS) algorithm using Ant Colony Optimization (ACO). It is inspired by the particular behavior of real ants, namely by the fact that they are capable of finding the shortest path between a food source and the nest. There are considered two ACO-FS model applications for pattern recognition in remote sensing imagery: ACO Band Selection (ACO-BS) and ACO Training Label Purification (ACO-TLP). The ACO-BS reduces dimensionality of an input multispectral image data by selecting the “best” subset of bands to accomplish the classification task. The ACO-TLP selects the most informative training samples from a given set of labeled vectors in order to optimize the…
Memetic Algorithms in Engineering and Design
2012
When dealing with real-world applications, one often faces non-linear and nondifferentiable optimization problems which do not allow the employment of exact methods. In addition, as highlighted in [104], popular local search methods (e.g. Hooke-Jeeves, Nelder Mead and Rosenbrock) can be ill-suited when the real-world problem is characterized by a complex and highly multi-modal fitness landscape since they tend to converge to local optima. In these situations, population based meta-heuristics can be a reasonable choice, since they have a good potential in detecting high quality solutions. For these reasons, meta-heuristics, such as Genetic Algorithms (GAs), Evolution Strategy (ES), Particle …
Some Aspects Regarding the Application of the Ant Colony Meta-heuristic to Scheduling Problems
2010
Scheduling is one of the most complex problems that appear in various fields of activity, from industry to scientific research, and have a special place among the optimization problems In our paper we present the results of our computational study i.e an Ant Colony Optimization algorithm for the Resource-Constrained Project Scheduling Problem that uses dynamic pheromone evaporation.
Cryptanalysis of Knapsack Cipher Using Ant Colony Optimization
2018
Ant Colony Optimization is a search metaheuristic inspired by the behavior of real ant colonies and shown their effectiveness, robustness to solve a wide variety of complex problems. In this paper, we present a novel Ant Colony Optimization (ACO) based attack for cryptanalysis of knapsack cipher algorithm. A Cipher-text only attack is used to discover the plaintext from the cipher-text. Moreover, our approach allows us to break knapsack cryptosystem in a minimum search space when compared with other techniques. Experimental results prove that ACO can be used as an effective tool to attack knapsack cipher.
Methods matter: Testing competing models for designing short-scale Big-Five assessments
2015
Abstract Many psychological instruments are psychometrically inadequate because derived person-parameters are unfounded and models will be rejected using established psychometric criteria. One strategy towards improving the psychometric properties is to shorten instruments. We present and compare the following procedures for the abbreviation of self-report assessments on the Trait Self-Description Inventory in a sample of 14,347 participants: (a) Maximizing reliability/main loadings, (b) Minimizing modification indices/cross loadings, (c) the PURIFY Algorithm in Tetrad, (d) Ant Colony Optimization, and (e) a genetic algorithm. Ant Colony Optimization was superior to all other methods in imp…
Drivers-Inspired Ants for Solving the Vehicle Routing Problem with Time Windows
2016
International audience; In our study, we develop a method that merges two information sources within ants colony optimization heuristic. Namely artificial ants which occurs for short term optimization and transporter's vehicles that occurs in long term and continuous optimization toward solving the real-world vehicle routing problem. This study is supported by a transporter (Upsilon) of the region of l'Yonne in France and a transport and logistics software development company (Tedies). Our method suits for transporters that use human planners to make decisions about their tours and intending to move to computer planners without drastically upsetting the drivers habits. Hence, the pledge of …
Fuzzy predictive controller design using ant colony optimization algorithm
2014
In this paper, an approach for designing an adaptive fuzzy model predictive control (AFMPC) based on the Ant Colony Optimization (ACO) is studied. On-line adaptive fuzzy identification is used to identify the system parameters. These parameters are used to calculate the objective function based on predictive approach and structure of RST control. The optimization problem is solved based on an ACO algorithm, used at the optimization process in AFMPC to calculate a sequence of future RST control actions. The obtained simulation results show that proposed approach provides better results compared with Proportional Integral-Ant Colony Optimization (PI-ACO) controller and adaptive fuzzy model pr…
On the Use of Prognostics and Health Management to Jointly Schedule Production and Maintenance on a Single Multi-purpose Machine
2020
This paper address the problem of using prognostic information in the decision-making process of a single multi-purpose machine. The prognostics and health management method is compared to condition-based maintenance combined with a genetic algorithm to determine the joint schedule of maintenance and production. The paper presents a methodology to select the adequate strategy while considering several factors that influence the functioning of the machine. The results show that operational and conditions variability influence the choice of the suitable methods. In the presented case, we show configurations where prognostic information is useless or useful.
On Randomness and Structure in Euclidean TSP Instances: A Study With Heuristic Methods
2021
Prediction of the quality of the result provided by a specific solving method is an important factor when choosing how to solve a given problem. The more accurate the prediction, the more appropriate the decision on what to choose when several solving applications are available. In this article, we study the impact of the structure of a Traveling Salesman Problem instance on the quality of the solution when using two representative heuristics: the population-based Ant Colony Optimization (ACO) and the local search Lin-Kernighan (LK) algorithm. The quality of the result for a solving method is measured by the computation accuracy, which is expressed using the percent error between its soluti…
Integrated Production and Predictive Maintenance Planning based on Prognostic Information
2019
International audience; This paper address the problem of scheduling production and maintenance operation in predictive maintenance context. It proposes a contribution in the decision making phase of the prognostic and health management framework. Theprognostics and decision processes are merged and an ant colony optimization approach for finding the sequence of decisions that optimizes the benefits of a production system is developed. A case study on a single machine composed of several components where machine can have several usage profiles. The results show thatour approach surpasses classical condition based maintenance policy.